Orientation selectivity is reduced by monocular deprivation in combination with PKA inhibitors.
نویسندگان
چکیده
We have previously shown that the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3',5'-monophosphorothioate (Rp-8-Cl-cAMPS), abolishes ocular dominance plasticity in the cat visual cortex. Here we investigate the effect of this inhibitor on orientation selectivity. The inhibitor reduces orientation selectivity in monocularly deprived animals but not in normal animals. In other words, PKA inhibitors by themselves do not affect orientation selectivity, nor does monocular deprivation by itself, but monocular deprivation in combination with a PKA inhibitor does affect orientation selectivity. This result is found for the receptive fields in both deprived and nondeprived eyes. Although there is a tendency for the orientation selectivity in the nondeprived eye to be higher than the orientation selectivity in the deprived eye, the orientation selectivity in both eyes is considerably less than normal. The result is striking in animals at 4 wk of age. The effect of the monocular deprivation on orientation selectivity is reduced at 6 wk of age and absent at 9 wk of age, while the effect on ocular dominance shifts is less changed in agreement with previous results showing that the critical period for orientation/direction selectivity ends earlier than the critical period for ocular dominance. We conclude that closure of one eye in combination with inhibition of PKA reduces orientation selectivity during the period that orientation selectivity is still mutable and that the reduction in orientation selectivity is transferred to the nondeprived eye.
منابع مشابه
Complete restoration of visual cortical responses is possible late in development. Focus on "recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity".
This story began about 40 years ago when Wiesel and Hubel (1963, 1965) first reported that closing one eye early in development (by monocular lid suturing) produced devastating consequences later in life on the ability of the deprived eye to activate cells in the visual cortex. In the intervening decades, a voluminous literature that continues largely unabated to this day has dealt with virtual...
متن کاملBinocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
Experiences during the critical period sculpt the circuitry within the neocortex, leading to changes in the functional responses of sensory neurons. Monocular deprivation (MD) during the visual critical period causes shifts in ocular preference, or dominance, toward the open eye in primary visual cortex (V1) and disrupts the normal development of acuity. In carnivores and primates, MD also disr...
متن کاملResponses of macaque V1 neurons to binocular orientation differences.
Interocular differences in orientation occur during binocular viewing of a surface slanted in depth. These orientation disparities could be exploited by the visual system to provide information about surface slant, but gradients of positional disparity provide an equally effective means to the same end. We examined the encoding of orientation disparities in V1 neurons that were recorded from tw...
متن کاملNerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
The hypothesis that NGF could play a role in the plasticity of the developing mammalian visual cortex was tested in monocularly deprived (MD) rats. In particular, we have asked whether an exogenous supply of NGF could prevent the changes in ocular dominance distribution induced by monocular deprivation. Hooded rats were monocularly deprived for 1 month, starting at postnatal day 14 (P14), immed...
متن کاملIs the development of orientation selectivity instructed by activity?
Is the development of orientation selectivity in visual cortex instructed by the patterns of neural activity of input neurons? We review evidence as to the role of activity, review models of activity-instructed development, and discuss how these models can be tested. The models can explain the normal development of simple cells with binocularly matched orientation preferences, the effects of mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2002